Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2.

نویسندگان

  • S J Crafts-Brandner
  • M E Salvucci
چکیده

Net photosynthesis (Pn) is inhibited by moderate heat stress. To elucidate the mechanism of inhibition, we examined the effects of temperature on gas exchange and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation in cotton and tobacco leaves and compared the responses to those of the isolated enzymes. Depending on the CO(2) concentration, Pn decreased when temperatures exceeded 35-40 degrees C. This response was inconsistent with the response predicted from the properties of fully activated Rubisco. Rubisco deactivated in leaves when temperature was increased and also in response to high CO(2) or low O(2). The decrease in Rubisco activation occurred when leaf temperatures exceeded 35 degrees C, whereas the activities of isolated activase and Rubisco were highest at 42 degrees C and >50 degrees C, respectively. In the absence of activase, isolated Rubisco deactivated under catalytic conditions and the rate of deactivation increased with temperature but not with CO(2). The ability of activase to maintain or promote Rubisco activation in vitro also decreased with temperature but was not affected by CO(2). Increasing the activase/Rubisco ratio reduced Rubisco deactivation at higher temperatures. The results indicate that, as temperature increases, the rate of Rubisco deactivation exceeds the capacity of activase to promote activation. The decrease in Rubisco activation that occurred in leaves at high CO(2) was not caused by a faster rate of deactivation, but by reduced activase activity possibly in response to unfavorable ATP/ADP ratios. When adjustments were made for changes in activation state, the kinetic properties of Rubisco predicted the response of Pn at high temperature and CO(2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drought stress and carbon assimilation in a warming climate: reversible and irreversible impacts

Global change is characterized by increased CO2 concentration in the atmosphere, increasing average temperature and more frequent extreme events including drought periods, heat waves and flooding. Especially the impacts of drought and of elevated temperature on carbon assimilation are considered in this review. Effects of extreme events on the subcellular level as well as on the whole plant lev...

متن کامل

Drought stress and carbon assimilation in a warming climate: reversible and irreversible impacts

Global change is characterized by increased CO2 concentration in the atmosphere, increasing average temperature and more frequent extreme events including drought periods, heat waves and flooding. Especially the impacts of drought and of elevated temperature on carbon assimilation are considered in this review. Effects of extreme events on the subcellular level as well as on the whole plant lev...

متن کامل

Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts.

Global change is characterized by increased CO2 concentration in the atmosphere, increasing average temperature and more frequent extreme events including drought periods, heat waves and flooding. Especially the impacts of drought and of elevated temperature on carbon assimilation are considered in this review. Effects of extreme events on the subcellular level as well as on the whole plant lev...

متن کامل

Drought stress and carbon assimilation in a warming climate: reversible and irreversible impacts

Global change is characterized by increased CO2 concentration in the atmosphere, increasing average temperature and more frequent extreme events including drought periods, heat waves and flooding. Especially the impacts of drought and of elevated temperature on carbon assimilation are considered in this review. Effects of extreme events on the subcellular level as well as on the whole plant lev...

متن کامل

Drought stress and carbon assimilation in a warming climate: reversible and irreversible impacts

Global change is characterized by increased CO2 concentration in the atmosphere, increasing average temperature and more frequent extreme events including drought periods, heat waves and flooding. Especially the impacts of drought and of elevated temperature on carbon assimilation are considered in this review. Effects of extreme events on the subcellular level as well as on the whole plant lev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 24  شماره 

صفحات  -

تاریخ انتشار 2000